Nanjing SiSiB Silicones Co., Ltd. Add: Guanghua Science & Technology Industrial Zone, No. 104 Guanghua Road, Nanjing 210007, China Phone: +86-25-5859-9930, 9931, 9932 Fax: +86-25-5859-9935 Email: sales@SiSiB.com www.SiSiB.com www.PCC.asia

## SiSiB SILICONES

A part of SINOPCC group.



# *SiSiB SILANES for Crosslinking PE*





### SiSiB SILICONES

SiSiB SILICONES, a part of SINOPCC group established in 1989, is one of the leading manufacturers in silicone industry, focusing on the development and manufacture of silanes and silicones.

Strategically positioned within the silicone supply chain, SiSiB SILICONES provide a comprehensive range of performance-enhancing products and solutions to meet the need of customers. These include silanes and siliconates, silicone fluids, silicone emulsions, silicone rubber, silicone gum and fumed silica.

Today our products are used successfully throughout the wold in the adhesives and sealants, agriculture, artificial marbles, building protection, coatings & paints, fillers & pigments, foundries, fiber glass, leather & textile, lubricants, personal care, pharmaceuticals, plastics & thermoplastics, polyurethane foam, rubber & tyre, wires & cables.

### Why select SiSiB SILICONES?

- Strong silane and silicone manufacturing capabilities built over 30+ years history.
- Flexible manufacturing facility able to handle kilograms to thousands of tons per years.
- Rapid and professional process development and scale-up capabilities.
- Offer tailored options while adhering to high quality and safety standards.



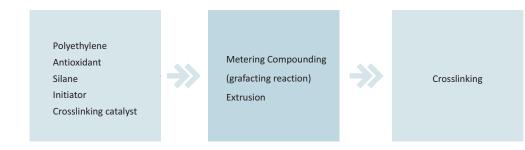


# **BACK GROUND**

Polyethylene has been crosslinked for many years by a number of proven methods. The initial goal was to extend the maximum service temperature. However, this technology delivers many important advantages compared to non-crosslinked polymers like polyethylene or PVC:

| Property of polyethylene              | Change after cross-linking of polyethylene |
|---------------------------------------|--------------------------------------------|
| Melt index                            | Decrease                                   |
| Density                               | No changes/decrease                        |
| Molecular weight                      | Significantly increased                    |
| Tensile strength                      | No changes/slightly increase               |
| Elongation-at-break                   | Decrease                                   |
| Impact resistance                     | Significantly improved                     |
| Abrasion resistance                   | Greatly improved                           |
| Stress-crack resistance               | Greatly improved                           |
| Elastic properties                    | Greatly improved                           |
| Environmental stress crack resistance | Increase                                   |
| Resistance to slow crack growth       | Increase                                   |
| Temperature resistance                | Greatly improved                           |
| Chemical resistance                   | Significantly increased                    |
|                                       |                                            |

## SiSiB Silanes for Crosslinking PE CO


Three main technologies have been developed for crosslinking polyethylene. These are peroxide, radiation and silane. Our purpose is to highlight the comparative advantages of the incorporation of silanes in crosslinking.

Comparison of several major cross-linking methods

| Method                                     | Silane                                                                                 | Peroxide                                                   | Radiation                                  |
|--------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------|
| Process flexibility                        | Very good                                                                              | Small                                                      | Very good                                  |
| Operation                                  | Easy                                                                                   | Difficult                                                  | Difficult                                  |
| Extruder                                   | Standard                                                                               | Special                                                    | Standard                                   |
| Production rate                            | High as for PE                                                                         | Low                                                        | High as for PE                             |
| Cost of post treatment                     | Low                                                                                    | -                                                          | High                                       |
| Capital investment                         | Low                                                                                    | High                                                       | High                                       |
| Diameter                                   | No limit, thickness<br>limited by speed of<br>cross-linking                            | Difficult to achieve big<br>diameters because of<br>output | Limited by penetration depth of electron   |
| Scrap rates                                | Low                                                                                    | High scrap                                                 |                                            |
| Raw material costs                         | Slightly high                                                                          | Low                                                        | Low                                        |
| Levels of attainable<br>cross-link density |                                                                                        | High                                                       | Probability of variation                   |
| Other                                      | Wider scope for<br>formulation<br>through broad<br>processing<br>window, recyclability | Energy intensive                                           | Clean (pipe) because of<br>fewer additives |
|                                            |                                                                                        |                                                            |                                            |



# MONOSIL



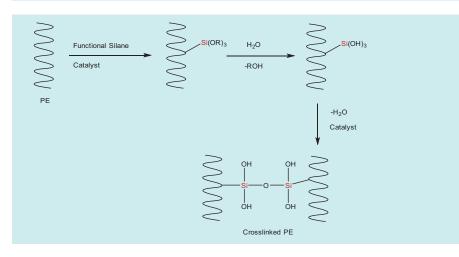
### MONOSIL (ONE-STEP) PROCESS

MONOSIL process is an onestep process by using a specially designed extruder with a high L: D ratio, silane is grafted onto polyethylene and the product is cross-linked in presence of moisture. In this process, polyethylene, peroxide, silane, tin catalyst and other compatible additives or fillers are

added in one continuous extrusion step. This single-step process combines the raw materials, accomplishes the grafting reaction and continuously forms a fabricated part such as wire and cable or pipe.

### SIOPLAS PROCESS

In this method, a mixture of silane and peroxide is added to molten polyethylene, leading to silane grafting reaction, which is a classical free radical chain reaction involving a catalyst.

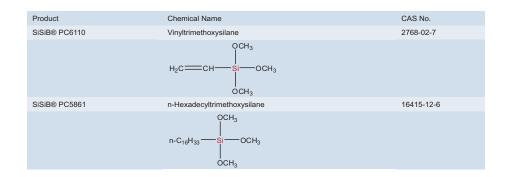

When it is intended to produce the final product, a catalyst masterbatch (consists of polyethylene, a catalyst, an antioxidant, a proper stabilizer, and an internal lubricant) is mixed with the above mentioned pellets in a typical weight ratio of 5:95, and the resultant mixture is melted, followed by extruding into the product.

#### Mixing Polyethylene $\rightarrow$ $\rightarrow$ $\rightarrow$ Catalyst $\rightarrow$ Compounding Catalyst masterbatch Antioxidant Pelletizing **Mixing Extrusion** Crosslinking Mixing Polyethylene $\rightarrow$ Crosslinkable $\rightarrow$ $\rightarrow$ $\rightarrow$ Compounding Silane graft polymer Initiator Pelletizing

## SIOPLAS

### **SiSiB Silanes for Crosslinking PE**

#### Principal reactions involved in silane cross-linking of polyethylene.




#### Comparison of the technologies of moisture cure.

| Process    | Advantages                                                                                                                                                                  | Disadvantages                                                                                                                                         |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sioplas    | Fast curing<br>Versatility of base resins<br>(i.e. LDPE, EVA, EPR, DPE ,etc.)<br>Low capital investment<br>No need to special equipment                                     | Two step technology<br>Limited shelf life<br>Higher raw material costs<br>Risk of pre-crosslinking on the<br>surface of pellets during storage        |
| Monosil    | Low material cost<br>Versatility of base resins<br>Fast curing<br>Shelf life not an issue                                                                                   | Limited use of some additives<br>Handling of hazardous liquid chemicals<br>High scrap rates<br>High capital investment<br>Specific equipment required |
| Dry-Silane | Potential low material costs<br>Ease of storage<br>Improved safety and handling<br>Versatility of base resins<br>Fast curing<br>Good homogeneity<br>Less gels and fish eyes | Use of additives limited or impossible<br>Moderate capital investment<br>Limited shelf life                                                           |

### **PURE SILANE**

SiSiB<sup>®</sup> PC6110 is used for silane crosslinking and the production of crosslinkable polyolefin compounds. Silane SiSiB<sup>®</sup> PC5861 is used as water scavenger and precuring retarder. They can increase shelf life as well as safety in handling and processing of silane crosslinkable compounds

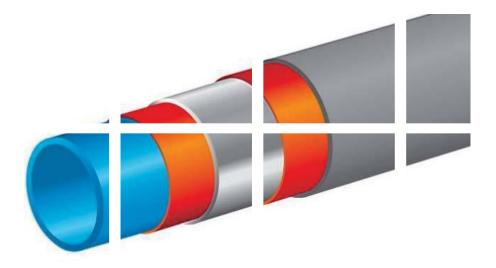




## **MULTI-COMPONENT SILANE**

SiSiB PC6110Sxxx formulated silanes are fully formulated multi-component systems containing peroxide, catalyst and additives.

| SiSiB      | Silane | Peroxide | Catalyst | Antioxidant | Metal Deactivator |
|------------|--------|----------|----------|-------------|-------------------|
| PC6110S001 | х      | х        | х        |             |                   |
| PC6110SHE  | х      | х        | х        |             |                   |
| PC6110SHS  | х      | х        | х        | х           |                   |
| PC6110S735 | х      | х        | х        | х           | х                 |
| PC6110S758 | х      | х        | х        |             |                   |
| PC6110S870 | х      | х        | х        | x           | х                 |
| PC6110S928 | х      | х        | х        | х           | х                 |
| PC6110S963 | х      | х        | х        | x           | х                 |
| PC6110S966 | х      | х        | х        | х           | х                 |


| SiSiB      | Application                                                                                                                     |
|------------|---------------------------------------------------------------------------------------------------------------------------------|
| PC6110S001 | General use system for stabilized resins. (Monosil Process, Cables)                                                             |
| PC6110SHE  | High efficient system for LLDPE resins                                                                                          |
| PC6110SHS  | General use system for stabilized resins. (Monosil Process, Cables)                                                             |
| PC6110S735 | For low or medium volume cables on copper conductor.                                                                            |
| PC6110S758 | For Monosil Process pipes.                                                                                                      |
| PC6110S870 | For halogen-free flame retardant cables and semi conductive compounds containing carbon black.                                  |
| PC6110S928 | For low or medium voltage cables on copper conductor. Provides higher grafting density and faster moisture-curing than 6110S735 |
| PC6110S963 | For low or medium volume cables on copper conductor.                                                                            |
| PC6110S966 | For low or medium voltage cables on copper conductor.                                                                           |

### **SiSiB Silanes for Crosslinking PE**

### **DRY SILANE**

It is similar to Monosil except that instead of using liquid additives, the silane, initiator, and catalyst are absorbed into a porous resin (typically polypropylene, ethylene vinyl acetate (EVA), high- or low density polyethylene). The Drysilane masterbatches are available with different silane loadings in the range 40 to 70 wt%. Dry-silane technology can be used for a wide range of LDPE and LLDPE grades.

| SiSiB                                                                                          | Application                                              | Silane        | Peroxide      | Catalyst                                   | Antioxidant | Metal Deactivator    |  |
|------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------|---------------|--------------------------------------------|-------------|----------------------|--|
| SIPOR-30                                                                                       | Cable                                                    | х             | х             | х                                          |             |                      |  |
| SIPOR-50                                                                                       | Copper Cable                                             | х             | х             | х                                          | х           | х                    |  |
| SIPOR-60                                                                                       | Pipes                                                    | х             | х             | х                                          |             |                      |  |
| SIPOR-70                                                                                       | HFFR                                                     | х             | х             | х                                          | х           | х                    |  |
|                                                                                                |                                                          |               |               |                                            |             |                      |  |
| SiSiB                                                                                          | Application                                              |               |               |                                            |             |                      |  |
| SIPOR-30                                                                                       | Designed for st                                          | abilized resi | n associatior | association with stabilized masterbatches. |             |                      |  |
| SIPOR-50 Designed for copper cables. Contains full package of stabilizers and metal deactivato |                                                          |               |               |                                            |             | d metal deactivator. |  |
| SIPOR-60 Designed for pipe application, to be used with HDPE.                                  |                                                          |               |               |                                            |             |                      |  |
| SIPOR-70                                                                                       | For halogen free, flame retardant, ATH-filled compounds. |               |               |                                            |             |                      |  |

